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Executive  
Summary
Six privilege elevation vulnerabilities and one information 
leak vulnerability were discovered that allow code running 
as a non-privileged user to gain full access to kernel 
memory, and therefore full access to the entire system. 
These vulnerabilities were confirmed to be present in all 
versions of Windows since early 2007, introduced with 
Windows Vista. Reliable exploits were demonstrated for 
four of the privilege escalation vulnerabilities and the 
information leak. 

Microsoft has proceeded to patch all vulnerabilities 
between July 13th, 2021 and October 12th, 2021.
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Definitions

AFD - Ancillary Function Driver

ALPC - Advanced Local Procedure Call

BSOD - Blue Screen of Death

DoS - Denial of Service

EoP - Elevation of Privilege

InfoLeak - Information Leak or Information Disclosure

IOCTL - Device Input and Output Control

IPC - Inter-Process Communication

LPC - Local Procedure Call

LPE - Local Privilege Elevation

QoS - Quality of Service

RCE - Remote Code Execution

RPC - Remote Procedure Call

TDI - Transport Driver Interface

TDX - TDI Extension

TOCTOU - Time-of-Check Time-of-Use
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During the course of my normal day job, I needed a deeper 
understanding of the internals of Windows ALPC. Over a couple of 
weeks of research this ended up leading down a rabbit hole to the 
reverse engineering of several undocumented Windows kernel 
components and the discovery of multiple privilege elevation 
vulnerabilities and one information leak.

This paper will cover some of  
the areas of the Windows kernel  
that were explored and describe  
the details of the discovered 
vulnerabilities and how they can  
be exploited. 

In order to understand the details of the vulnerabilities 
the reader should be familiar with several Windows and 
vulnerability exploitation concepts:

■	 Windows Kernel IO

■	 Advanced Local Procedure Call

■	 Windows Sockets

■	 Time-of-Check Time-of-Use Vulnerabilities

Introduction

fieldeffect.com/blackswan
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Windows Kernel IO

User mode applications interact with the kernel by  
making system calls. Applications normally use higher 
level Windows APIs (such as Win32) but they can still 
make system calls directly. Most system calls take 
arguments from user mode and often involve passing 
pointers to memory buffers. The kernel is responsible  
for safely capturing the data from user mode memory  
(or copying data to user mode memory) and handling 
malicious applications that might unmap memory or 
change its contents.

The kernel provides a set of helper functions to safely 
access user memory (ProbeForRead, ProbeForWrite, etc.). 
These functions ensure that the memory addresses 
provided reside in the user mode address space, are 
properly aligned and are mapped. Once probed, the  
kernel can read the data in user memory, although any 
access must be done inside an exception handler to avoid 
attempted tampering, such as the user mode application 
unmapping the memory.

To protect against malicious user mode code modifying 
data, kernel code should read the data once and save a 
copy of it for processing. For performance reasons, it is 
sometimes not desirable to copy all of the user mode  
data into kernel memory. The other common pattern is to 
lock the user memory (MmProbeAndLockPages), which 
prevents it from being unmapped, and map an address in 
the kernel address space to point at the same pages of 
memory (MmMapLockedPagesSpecifyCache). This allows 
kernel code to safely access the memory outside of an 
exception handler. However, using an exception handler is 
still recommended as the user mode application can still 
modify the data.

FIGURE 1: KERNEL IO - LOCK AND MAP MEMORY 
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Device Driver IOCTL  
Buffer Handling

One way for user mode to communicate with the  
kernel is to open a kernel device and then use IO Control 
Messages (IOCTLs) via the NtDeviceIoControlFile system 
call. Just like other system calls a driver must safely 
access user memory when handling IOCTLs.

When processing IOCTLs a driver has several options  
for deciding how to define messages, based on the IO 
type: Buffered, Direct or Neither. With Buffered IO any 
user buffers are fully copied into kernel memory, whereas 
with Direct IO the user mode buffers are locked into 
memory and mapped to a kernel address. With the final 
type, Neither IO, the driver receives the original user 
buffers and is responsible for capturing/writing the 
memory safely.

Buffered IO is the safest IO type as there is no risk of user 
mode unmapping the memory or modifying its contents, 
however, it has more processing overhead than Neither 
IO. Direct IO protects from memory being unmapped, 
and also has more processing overhead than Neither IO 
and does not protect against user mode applications 
from modifying data.

https://get.fieldeffect.com/blackswan
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ALPC
Local Procedure Call (LPC) is a communication 
mechanism used by Windows for communication 
between two user mode processes, a user mode  
process and the kernel, or between two kernel drivers.  
An example of LPC would be applications sending 
messages to LSASS.exe (Local Security Authority 
Subsystem Service) to complete SSL handshakes.

Microsoft introduced the Advanced Local Procedure  
Call (ALPC) system with Windows Vista as a higher 
performance method of Inter-Process Communication 
(IPC). The older LPC interface enforced synchronous 
communication between client and server endpoints, 
while all communication in ALPC is asynchronous.  
The LPC interface remains in Windows for backwards 
compatibility but internally it is redirected to the newer 
ALPC system. Both the LPC and ALPC interfaces are not 
documented and intended only for internal use by other 
Windows components. 

ALPC is accessible through kernel system calls whose 
usage is very similar to traditional socket programming. 
The server process creates a named ALPC port to begin 
listening for client connections, with one or more clients 
connected concurrently. When a client connects, the 
server decides to accept or reject the connection and if 
accepted messages can start to be exchanged.

One of the performance improvements in ALPC is the 
optional use of IO Completion Ports which provide an 
efficient method of processing asynchronous IO requests.

FIGURE 2: BASIC ALPC ARCHITECTURE
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ALPC System Calls

ALPC exposes a relatively small API to user mode applications. The 
API is undocumented and applications should use a higher level API 
for IPC, such as Remote Procedure Call (RPC). But the ALPC system 
calls can be invoked directly if desired and they are usually accessible 
from any sandbox or process context.

FIGURE 3: ALPC SYMBOLS FROM WINDBG
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To illustrate a simple use case of the ALPC system calls, the following 
is example pseudocode of client and server connecting, respectively:

FIGURE 4: SERVER ALPC ENDPOINT CODE EXAMPLE

FIGURE 5: CLIENT ALPC ENDPOINT CODE EXAMPLE

Both the server and client endpoints can perform optional security 
checks when establishing connections, including checking expected 
SIDs and privileges.

https://get.fieldeffect.com/blackswan
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Messaging

ALPC messages contain application specific data, and can also 
contain additional message metadata called attributes. The  
metadata information can include information such as: message  
IDs, impersonation details, and shared memory information.

The normal operation to send a small message is:

01 Message copied from sender’s process into kernel memory

02 Copy of message saved on receive port’s queue

03 Receiving process asks for new messages

04 Message is copied from kernel memory into receiver’s process.

If larger messages are going to be sent, then a shared memory  
view can be created between the client and server and message  
data exchanged via the view.

https://get.fieldeffect.com/blackswan
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Completion Lists

One of the performance improvements included in ALPC is the use of shared 
memory between client and server, thus reducing the number of times a 
message has to be copied. Even if the client is not using shared memory the 
server can map a shared region with the kernel called a completion list. The 
kernel copies incoming messages into this list until the user mode server is 
ready to receive them.

User mode sets the shared memory for the list which must be page aligned 
and a multiple of page size in length. Allowable sizes are between 4kB and 
1GB. The completion list is made up of several sections, each list starts with a 
header that contains offsets for each section and some other common fields.

FIGURE 6: COMPLETION LIST HEADER
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The List section is for keeping track of pending messages in the 
completion list and consists of offsets into the Data section. Indices 
for the head and tail of the list are stored in the State header field.

Allocation of chunks in the Data section is tracked using the Bitmap 
section. Each bit in this section represents a 64-byte chunk in the 
Data section.

FIGURE 7: ALPC MESSAGE HEADER
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Messages all have a common header containing metadata (size,  
type, etc). All messages in a completion list have the same set of 
attributes. Any attribute data is stored directly after the message  
in the Data section.

The figure below shows the region offsets in the completion list 
header pointing to the List Section (#1), Data Section (#2) and Bitmap 
Section (#3). There is only one message in the completion list and the 
List Section contains the offset of this message. The start of the List 
is indicated by the ListHead field in the header (#4). Space for the 
message has been reserved by setting the corresponding bits in the 
Bitmap Section (#5).

FIGURE 8: COMPLETION LIST MEMORY LAYOUT 
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Windows Sockets
Windows socket programming is done using the  
winsock API. Most other operating systems use the 
POSIX socket API for socket programming which is 
usually implemented as a syscall interface to the kernel. 
Microsoft eventually added a mostly POSIX socket 
compliant API to winsock, but the kernel interface is still 
the largely undocumented Ancillary Function Driver (AFD).

While AFD is the user mode interface to the kernel TCP/IP 
stack, there are two interfaces that can be used by kernel 
drivers: the Transport Device Interface (TDI) and Winsock 
Kernel (WSK). TDI is a legacy interface for drivers to 
access the transport layer of the windows networking 
stack (which originally included TCP/IP, NetBIOS and 
AppleTalk transport providers). The networking stack was 
redesigned with Windows Vista and the TDI Extension 
(TDX) driver maps TDI functionality to the new TCP/IP 
interface. WSK provides a socket-like interface to the 
TCP/IP stack for all newer drivers.

FIGURE 9:  WINDOWS TCP/IP STACK (VISTA AND NEWER)

https://get.fieldeffect.com/blackswan
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Ancillary Function Driver
AFD exposes a relatively complex interface to user mode 
which is only intended for use by the user mode winsock 
library. However, any application that can use sockets can 
also communicate with AFD directly.

To communicate with AFD, a handle must first be  
opened to the desired resource. For a socket handle,  
this is done by opening the AFD device with extended 
attributes set to an open packet structure. The open 
packet specifies transport parameters (i.e. name, address 
family, socket type, protocol) which are used to match 
with transport for socket creation. Default transport  
layer providers (in AfdTlTransportListHead) are:  
TCP, UDP, Raw, and Unix sockets.

Communication with AFD is done through IOCTL calls, 
which are dispatched to one of 79 different functions. 
The following figure shows the list of functions in the 
dispatch and immediate dispatch tables.

FIGURE 10: DISPATCH TABLE FOR AFD IOCTLS

https://get.fieldeffect.com/blackswan


fieldeffect.com/blackswan

Blackswan Technical Write-Up 14

Socket Creation

In order to send IOCTL calls to the AFD driver, a handle must be 
opened. Several types of endpoints can be opened depending on  
the contents of the extended attributes buffer. Normal socket 
endpoints are created by using an extended attribute named 

‘AfdOpenPacketXX’ where the contents are a structure specifying  
the typical socket creation options (Family, Type & Protocol) and an 
optional transport name.

The created endpoint has options and flags set based on the  
contents of the open packet and these determine how the endpoint 
will behave when handling IOCTL calls. The transport name is the 
path of a lower level TDI device object (i.e. ‘\Device\Tcp’), and if 
specified, an internal handle to the device will be opened.

Socket Options

A common operation on socket handles is to set and retrieve 
properties of different layers of the TCP/IP stack, the typical API 
functions used are: getsocketopt, setsocketopt and ioctlsocket. 
These functions call through the AfdTliIoControl IOCTL. This interface 
is interesting because the requests are passed down to multiple 
endpoints on lower-level drivers (i.e. TCPIP.sys).

When calling AfdTliIoControl the following structure is passed in:

FIGURE 11: SOCKET IOCTL STRUCTURE
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The kernel validates this structure to make sure that only  
allowed combinations of Type and Level are permitted using  
the following call:

There is also some special handling for a couple of specific  
IOCTL codes: SIO_SET_QOS and SIO_RESERVED_1. The special 
handling functions are AfdTliIoControlHandleSetQos and 
AfdTliIoControlHandleAssociateQos and both process the input 
buffer and rewrite with kernel pointers.

Once validated the data is forwarded to lower-level drivers  
(i.e. TCPIP.sys), in particular the QOS options with special  
handling are eventually processed by PACER.sys.

FIGURE 12: SOCKET IOCTL VALIDATION FUNCTION
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Transport Driver Interface Extension

As previously mentioned, the TDI driver is the legacy 
kernel mode interface to the network stack and the TDX 
driver maps the legacy functionality to the TCP/IP stack. 
The TDX device can be opened directly from user mode 
but most of the limited functionality is only available 
through one of the TDI transport devices: ‘/Device/Udp’, ‘/
Device/Tcp6’, etc. User mode programs are only able to 
open control channel endpoint to the TDI transports (see 
TdxCreateControlChannel), while kernel mode can create 
connection and network address endpoints.

Kernel mode clients can issue a wider range of commands 
to TDX endpoints, including internal IO control requests 
to transport address and connection endpoints. These 
internal IO requests, handled by TdxIssueIoControlRequest, 
are passed down the TCP/IP stack in the same way as 
ioctlsocket & setsockopt calls but – as kernel clients are 
implicitly trusted – they don’t go through the validation 
and translation functions in AFD.

FIGURE 13: AFD IOCTL PROCESSING
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When calling TdxIssueIoControlRequest the following structure  
is passed in, which is very similar to the structure used by AFD  
in AfdTliIoControl:

FIGURE 14: TDX IOCTL STRUCTURE
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TOCTOU Vulnerabilities
It is important at this point to describe a class of 
vulnerabilities known as Time-Of-Check-Time-Of-Use  
or TOCTOU vulnerabilities. When processing untrusted 
input, an application must check that the input is within 
the expected range of values before using the data.  
A TOCTOU vulnerability is a race condition where the 
input can be changed by an attacker between the initial 
validation of the input and its use. This is a well-known 
class of vulnerability for kernel system calls that 
processes user input. Despite being well known these 
types of bugs are relatively hard to spot.

As a performance enhancement many system calls do 
not copy all input from user mode into kernel buffers. 
Instead, the user mode addresses may be accessed 
directly from kernel or the backing pages may be locked 
and mapped to kernel addresses. In both cases, a 
malicious user mode application can modify the memory 
while the kernel is accessing it thus exposing potential 
TOCTOU vulnerabilities if the kernel code is not careful.

FIGURE 15: EXAMPLE TOCTOU

https://get.fieldeffect.com/blackswan
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The following code snippet shows  
the CVE-2020-7460 vulnerability from 
the freebsd32_copyin_control function 
which illustrates how TOCTOU 
vulnerabilities work.

This function parses an array of socket 
control messages and copies them to 
a kernel buffer. The incoming buffer is 
in user mode, and the copyin function 
ensures the buffer is valid user 
memory. The control messages are 
iterated through, calculating the total 
size required (#1). Then enough kernel 
memory is allocated to store all the 
control messages (#2). A second loop 
is used to copy the control messages 
into the kernel buffer, but the length of 
each control message is read from the 
user mode buffer a second time (#3). 
At this point the user application could 
have altered the length to be larger 
than when it was first read (#1). If this 
happens, then when the control 
message is copied into the kernel 
buffer (#4), an overflow will occur.

FIGURE 16: CVE-2020-7460 FREEBSD TOCTOU

CVE-2020-7460 - FreeBSD  
TOCTOU Vulnerability

https://get.fieldeffect.com/blackswan
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CVE-2021-34514  
ALPC TOCTOU LPE

When an application creates an ALPC 
port, it has the option to specify a 
shared memory region to use for 
received messages as a performance 
enhancement. When a message is sent 
to the ALPC port, the kernel will copy 
the message and associated metadata 
into this shared region, known as a 
completion list. This is handled by the 
AlpcpCompleteDispatchMessage 
function. 

FIGURE 17: CVE-2021-34514 ALPCPCOMPLETEDISPATCHMESSAGE
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This function allocates space in the completion list using the bitmap 
section, then copies the message header and message body into the 
shared user mode region. If the message contains attributes, then 
they will also be copied. Attributes are normally stored immediately 
after the message data. However, when calculating this position, the 
message length (TotalLength) is read from the message header in the 
shared user mode region. 

If a malicious application changes the message length in the shared 
region after the kernel has copied the message header (location #1 in 
Figure 17), but before the attribute destination pointer is calculated 
(location #2 in Figure 17), then a write past the end of the buffer will 
occur. This can lead to either memory corruption or an access 
violation and Blue Screen of Death (BSOD).

While investigating methods to exploit this vulnerability, I explored 
many different areas of the Windows kernel, looking for ways to 
control the kernel address space. One of these areas, which turned 
out to be more interesting, was Windows Sockets.

FIGURE 18: CALL STACK FOR CVE-2021-34514 BSOD
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Socket IOCTL  
Validation Bypass
When a socket is created with a transport name specified, 
a TDX handle will be opened to an address endpoint 
when the socket is bound to an address. If the correct 
flags are set in the socket create packet, the address 
handle can be returned to user mode with the 
AfdQueryHandles IOCTL. 

Using this handle, internal socket IO control  
requests can be issued directly using the function 
TdxIssueIoControlRequest with no restrictions on the 
types of codes passed in. This function is likely not 
intended to be reached from user mode. 

The validation bypass was patched by copying  
the validation done in AFD (in the function 
AfdAllowedUserIOControlRequest) to the TDX driver  
(via a new TdxTdiAllowedUserIOControlRequest function).

Three different memory corruption vulnerabilities  
and an information disclosure were discovered using  
this validation bypass.

FIGURE 19: AFD IOCTL VALIDATION BYPASS
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CVE-2021-38629 Socket  
Query Security InfoLeak

Socket options calls sent to a TCP address  
endpoint are received in TCPIP.sys by the function 
TcpTlEndpointIoControlEndpointCalloutRoutine, which 
calls handling routines specific to the type of IOCTL  
(i.e. setsockopt, ioctlsocket, internal). If the socket IOCTL 
validation bypass is used with the internal type, then 
 the request is handled by TcpIoControlEndpoint, and a 
code of 0x20 invokes the TcpQuerySecurityEndpoint 
function. This function reads the security descriptor for 
the address endpoint and returns a pointer to it in the 
output buffer.

The security descriptor is allocated from the PagedPool 
and the leak of this pointer is an ASLR bypass. This 
information leak can make exploitation of memory 
corruption bugs easier. 

Note that this information disclosure also applies to  
UDP address endpoints.

FIGURE 20: CALL STACK FOR CVE-2021-38629

FIGURE 21: INFORMATION DISCLOSURE EXAMPLE

https://get.fieldeffect.com/blackswan


fieldeffect.com/blackswan

Blackswan Technical Write-Up 24

CVE-2021-38638 #1  
Socket Set Security LPE

Socket options calls sent to a TCP address endpoint are received in  
TCPIP.sys by the function TcpTlEndpointIoControlEndpointCalloutRoutine, 
which calls handling routines specific to the type of IOCTL (i.e. setsockopt, 
ioctlsocket, internal). If the socket IOCTL validation bypass is used with 
the internal type, then the request is handled by TcpIoControlEndpoint, 
and a code of 0x18 invokes the TcpSetSecurityEndpoint function. This 
function replaces the address endpoint’s security descriptor with an 
arbitrary pointer specified by user mode. A reference count on the security 
descriptor is incremented with a call to ObReferenceSecurityDescriptor, 
this results in an increment of an arbitrary kernel address that can be 
leveraged into full read and write access to kernel memory.

Note that this vulnerability also applies to UDP address endpoints.

FIGURE 22: CRASHING CALL STACK FOR CVE-2021-38638 #1
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Impact

This vulnerability can be exploited to gain full read and 
write access to kernel memory, allowing complete 
control over the system (see later section for details).  
The vulnerable code is reachable from any process that 
can open a handle to the TCP or UDP transport device  
(‘\Device\Tcp’). These devices are accessible to the 
‘Everyone’ group:

However, most sandboxes or low integrity processes  
will not be able to access the required device. This also 
applies to the QoS bugs CVE-2021-38638 #2 and  
CVE-2021-38638 #3.

Root Cause Analysis

A normal ioctlsocket call is processed by AfdTliIoControl 
and this function has a check to ensure user mode is only 
allowed to call a subset of IOCTL socket codes. This 
check is done in the AfdAllowedUserIOControlRequest 
function which specifically prevents the IOCTL type 
required for TcpIoControlEndpoint to be invoked.

It is likely that the possibility of sending socket IOCTL 
messages through the TDX driver — thereby bypassing 
the validation and copying done in the AFD driver — was 
not considered. Therefore, the lower layer TCP/IP driver 
assumed it would always be called from another kernel-
mode driver which is not true. This also applies to the 
information leak.

FIGURE 23: PERMISSIONS FOR ‘\DEVICE\UDP6’

https://get.fieldeffect.com/blackswan


fieldeffect.com/blackswan

Blackswan Technical Write-Up 26

CVE-2021-38638 #2  
Socket Associate QoS LPE

Socket options calls sent to a UDP address endpoint are 
received in PACER.sys by the function 
UdpTlEndpointIoControlEndpointCalloutRoutine, which 
calls handling routines specific to the type of IOCTL (i.e. 
setsockopt, ioctlsocket, internal). If the ioctlsocket or 
setsockopt types are used, then the request is handled by 
UdpSetSockOptEndpoint. Using the socket IOCTL 
validation bypass and a code of SIO_RESERVED_1 
(0x8800001A) will cause the request to be handled by 
QimInspectAssociateQoS but without the message 
translation that normally happens in AFD.sys.

Quality of Service (QoS) functionality is handled by 
PACER.sys, and the Associate QoS message is eventually 
passed down to the PcpValidateAndReferenceFlow 
function, which reads an arbitrary object pointer out of 
the input data. A reference count is incremented on this 
object in PcpReferenceFlow, this results in an increment 
of an arbitrary kernel address that can be leveraged into 
full read and write access to kernel memory.

Note that this vulnerability also applies to TCP address 
endpoints. See the later section on how this vulnerability 
can be exploited.

FIGURE 24: CRASHING CALL STACK FOR CVE-2021-38638 #2
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Root Cause Analysis

A normal ioctlsocket call is processed by AfdTliIoControl and this 
function has a special case to handle an Associate QoS request, 
specifically by calling the AfdTliIoControlHandleAssociateQoS 
function. This routine validates and makes a copy of the data passed 
in from user mode, including opening a handle and saving a FILE_
OBJECT pointer.

It is likely that the possibility of sending socket IOCTL messages 
through the TDX driver — thereby bypassing the validation and 
copying done in the AFD driver — was not considered. Therefore, the 
lower layer Pacer driver assumed it always receives validated data 
which is not true. This also applies to the Set QoS LPE vulnerability.
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CVE-2021-38638 #3  
Socket Set QoS LPE

Socket options calls sent to a UDP address endpoint are received in PACER.
sys by the function UdpTlEndpointIoControlEndpointCalloutRoutine, which 
calls handling routines specific to the type of IOCTL (i.e. setsockopt, 
ioctlsocket, internal). If the ioctlsocket or setsockopt types are used, then the 
request is handled by UdpSetSockOptEndpoint. Using the socket IOCTL 
validation bypass and a code of SIO_SET_QOS (0x8800000B) will cause the 
request to be handled by QimInspectSetQoS but without the message 
translation that normally happens in AFD.sys.

The structure expected as input for the IOCTL is:

Quality of Service functionality is handled by PACER.sys, and the Associate 
QoS message is eventually passed down to the PcpValidateFlowParameters 
function which accesses the ProviderSpecific buffer without properly probing 
and locking this user mode buffer. This can result in an access violation due 
to an invalid memory access. 

More interestingly, the buffer containing the QOS structure is in memory 
 that has been mapped from user mode so it can be changed while being 
accessed. This results in a TOCTOU bug (see section on TOCTOU) where the 
length of the ProviderSpecific buffer is read to calculate an allocation size and 
then read again to copy into the buffer. If user mode increases the length 
after the allocation is made, then a buffer overflow will occur which can be 
leveraged into full read and write access to kernel memory.

FIGURE 25: QOS IOCTL STRUCTURE
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The pseudocode for the TOCTOU bug:

FIGURE 26: TOCTOU PSEUDOCODE

The above code shows the original buffer length read from shared user memory 
being passed to PcpUpdateFlow (#1). The length used in the memory copy (#2) is 
then read again from shared user memory, thus potentially causing a heap overflow.

FIGURE 27: CRASHING CALL STACK FOR CVE-2021-38638 #3

Note that this vulnerability also applies to TCP address endpoints. 
See an upcoming section on how this vulnerability can be exploited.
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CVE-2021-38628 Set Multicast  
Filter Local Privilege Elevation

Windows provides the option of setting 
multicast filtering parameters for IPv4 or  
IPv6 addresses. These parameters can  
be set using the ioctlsocket call with the 
SIOCSMSFILTER code. This request uses  
the following data structure:

FIGURE 28: SET MULTICAST FILTER IOCTL STRUCTURE

When this structure is parsed by the  
TCPIP.sys driver, it has been mapped into 
memory shared with user mode. Length 
validation is done on the gf_numsrc field  
of this structure, which indicates the number 
of included IP addresses. This length is then 
used to allocate a NonPagedPool buffer to 
hold the IP addresses. However, when the 
addresses are copied into the new buffer, 
gf_numsrc is read from the original buffer  
a second time, leading to a TOCTOU 
vulnerability (see the TOCTOU section). 
 If user mode increases the length after the 
allocation is made, then a buffer overflow will 
occur which can be leveraged into full read 
and write access to kernel memory.

FIGURE 29: CALL STACK TO READ THE SECOND LENGTH FOR CVE-2021-38628
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Impact

This vulnerability can be exploited to gain full read  
and write access to kernel memory, allowing complete 
control over the system (see later section for details).  
The vulnerable code is reachable from any process that 
creates a UDP socket, which is any process that can open 
the AFD device (‘/Device/Afd’). Most sandboxes do not 
allow socket creation, but the Windows Defender 
Application Guard Sandbox does.

Root Cause Analysis

The code processing the multicast filter did not  
guard against TOCTOU race conditions. There are  
other TOCTOU race conditions in nearby code that  
lead to BSOD only, but Microsoft does not consider  
DoS (Denial of Service) bugs to meet their ‘bar for 
servicing’ so they may not get patched. Seeing as the 
TCPIP.sys driver is not directly callable by user mode,  
it is not surprising that these bugs slipped through.  
Using Buffered IO for the AFD IOCTL or making a copy  
of the input buffer before sending it to the TCPIP.sys 
driver would prevent bugs like this.
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Exploitation of  
Vulnerabilities

This section will discuss how these memory corruption 
vulnerabilities can be turned into reliable local privilege 
escalation (LPE) exploits. The four socket-related CVE’s 
have similarities and will be covered together: CVE-2021-
38638 #1 and CVE-2021-38638 #2 both allow for the 
increment of an arbitrary kernel address, while CVE-2021-
38638 #3 and CVE-2021-38628 are both buffer overflows 
in the NonPaged pool. With an understanding of some 
Windows kernel internals, reliably exploiting kernel pool 
corruption is relatively easy.

The techniques used work on Windows 10 19H1 and later 
and were partially based on Scooping the Windows 10 
Pool by Paul Fariello and Corentin Bayet of Synaktiv. The 
latest versions of the Windows kernel use the Segment 
Heap as the allocator for both the Paged and NonPaged 
pools. The Segment Heap has several backends that are 
used depending on allocation size and alignment; the 
Variable Size backend will be targeted with these exploits.

FIGURE 30: VARIABLE SIZE BACKEND STRUCTURES
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Variable Size Backend Basics

The Segment Heap’s Variable Size (VS) backend is used for allocations 
greater than 512 bytes and up to 128kB. The VS backend contains a 
linked list of Subsegments which are split into variable-sized memory 
chunks. When an allocation request is processed that cannot be 
satisfied with existing chunks a new Subsegment is created. The 
Subsegment will be twice the size of the allocation request, rounded 
up to the closest power of 2 (i.e. an allocation request for 0xf800 
bytes would create a Subsegment of size 0x20000). The first page  
of the Subsegment contains a header (HEAP_VS_SUBSEGMENT)  
and free chunks will be made from any unused memory and stored  
in the VS FreeChunkTree.

The following figure shows a VS Subsegment after an initial allocation 
of 0xf800 bytes:

FIGURE 31: VS SUBSEGMENT LAYOUT

When memory is freed from a Subsegment it will be merged with  
any neighbouring free chunks.
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Pipe Grooming

As discussed in the Scooping the Windows 10 Pool paper, Windows 
pipes are a useful way to get controlled allocations in the kernel. For 
grooming the PagedPool pipe, attributes can be used. For grooming 
the NonPagedPool pipe, data queue entries can be used. 

FIGURE 32: PIPE STRUCTURES

Pipe attributes are added using NtFsControlFile with an 
undocumented IOCTL code. Attributes with a different name  
are stored as a new entry in the linked list. Data queue entries 
 are created by writing to the pipe and will remain in a linked list  
until read from the other end of the pipe.

A common feature with both of these structures is that they  
begin with a doubly linked list entry. If the attacker has full control 
over the contents of the overflowing data, then the full entry can  
be controlled directly. If not, then the bottom few bytes of the 
Flink pointer (next entry in list) can be corrupted and the next  
list entry can point into the body of the following entry, resulting  
in a fully controlled attribute or data queue entry.

 The data in an attribute and a data queue entry can be read back 
 in user mode, so full control over either of these header structures 
results in an arbitrary kernel read. 

When a pipe is created, a context structure (referred to as a CCB) 
is also created. The CCB contains the linked list heads of the send 
 and receive data queues and attributes, as well as a pointer to the 
associated file object (See the NpCreateCcb function).

FIGURE 33: PIPE ATTRIBUTE CORRUPTION
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Exploiting NonPagedPool Overflows

Both CVE-2021-38638 #3 and CVE-2021-38628 can  
result in overflows in the NonPagedPool with almost  
fully controlled data and length. The main difference 
between these two bugs is that the overflow length for 
CVE-2021-38628 must be a multiple of the IP address size 
(4 bytes for IPv4 and 16 bytes for IPv6). This means that  
it is not possible to corrupt the least significant byte of 
the Flink pointer, so the entire data queue entry header 
must be overwritten.

Grooming is done by alternating NonPagedPool 
allocations of carefully chosen sizes to obtain the 
following VS Subsegment layout:

FIGURE 34: NONPAGEDPOOL GROOMING LAYOUT

There will be multiple Subsegments with this layout. The 
overflow allocation can occur in any Subsegment. Note 
that the first free chunk is larger (0xfc0 bytes) than the 
other free chunks in the Subsegment and the grooming 
ensures that any other free memory blocks of the same 
size have been used up.

Once the correct heap layout has been obtained, the 
desired vulnerability can be triggered with an allocation 
size of 0xf80 and an overflow length of 0x60, which will 
overwrite the target chunk’s heap header and the target 
data queue entry structure.

FIGURE 34: NONPAGEDPOOL OVERFLOW LAYOUT
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Gaining Arbitrary Read

Once full control of the data queue entry has been 
obtained, it still only gives a single arbitrary read. In order 
to get repeated arbitrary reads, the data queue can be 
extended by pointing the linked list entry to a fake data 
queue entry in user mode. This allows for repeated reads 
from arbitrary kernel addresses.

In order to use an arbitrary read, there needs to be some 
sort of info leak to identify where to start reading. The 
initial data queue entry corruption can also be used to get 
an info leak by increasing the entry length so the header 
of the following memory chunk can be read.

At this point, reads from the corrupted pipe will read the 
first 0xf800 bytes from the corrupted data queue entry 
which will include the start of the following memory 
chunk. Any read longer than 0xf800 will read data from 
the arbitrary address specified in the fake IRP structure in 
user mode. A normal pipe read will remove the entries 
from the data queue; instead, it is possible to call 
PeekNamedPipe() which will read from the queue but 
leave the data entries in place.

As discussed in the Scooping the Windows 10 Pool paper, 
it is possible to get a decrement of an arbitrary address 

by overwriting the Quota Process Pointer field of an 
allocated heap chunk header. This could be used to 
escalate the privileges of a specified process token. 
However, that would require a second overflow, which 
would be less reliable, and a full arbitrary kernel write is 
much more powerful.

With a full arbitrary read and an info leak, the address  
of the overflown buffer can be calculated. By walking  
the linked list of data queue entries, the address of the 
CCB can be obtained as well as the associated file object. 
This information is enough to set up an arbitrary write.

FIGURE 36:  DATA QUEUE CORRUPTION TO ARBITRARY READ
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Gaining Arbitrary Write

An arbitrary kernel write can be obtained by corrupting 
data queue entries in a pipe’s pending read queue. Entries 
in the read queue are a small, fixed size as they do not 
have any associated data and so they are difficult to 
target with a heap overflow. 

Alternatively, the SecurityContext field of a data queue 
entry can be leveraged to free an arbitrary kernel address. 
During a call of NpReadDataQueue, if the SecurityContext 
field is not NULL, then the SecurityContext field of the 
CCB will be freed and replaced with the new context. 
Using this behaviour, any kernel allocation can be freed – 
in this case, the file object for the pipe is freed.

By spraying memory with file object-sized allocations, 
the file object can be reclaimed with fully controlled data. 
The pointer to the CCB can then be set to a copy of the 
CCB with the pending read queue pointing to fake entries 
in user mode. At this point, any data written to the pipe 
will cause the data to be written to the address specified 
by the SystemAddress field of the fake IRP structure.

Finally, cleanup can be performed to prevent crashes 
after the exploit finishes. Cleanup includes repairing 
corrupted heap headers – requiring a leak of the heap 
cookie – and restoring data queue-linked lists. 

FIGURE 37: FAKE FILE OBJECT FOR ARBITRARY WRITE
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Elevation of Privilege (EoP)

With full arbitrary read and write to kernel memory, an attacker has 
full control over everything on the system. The simplest elevation 
method is to alter the Privileges field of the process token, giving the 
process full privileges. This can be abused to access the memory of 
other processes on the system and/or inject shellcode.

FIGURE 38: SOCKET SET MULTICAST FILTER EXPLOIT OUTPUT

FIGURE 39: WINLOGON.EXE AS PARENT OF CMD.EXE
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Exploiting Arbitrary  
PagedPool Increment

The paged pool increment primitives that can be gained with  
CVE-2021-38638 #1 and CVE-2021-38638 #2 can be exploited with 
nearly identical methods. Both of these vulnerabilities allow for the 
increment of a value at an arbitrary address in the kernel. To achieve 
arbitrary kernel read and write primitives, the pipe attribute entries 
were targeted.

CVE-2021-38629 can be used to leak an address in the PagedPool.  
This is not enough to predict the location of anything else in the pool 
by itself, but if the pool is expanded by making many large allocations, 
then the address of these large allocations can be correctly guessed 
with high reliability. By taking the available system memory and 
current usage into account, memory can be groomed to reliably 
increment the contents of a pipe attribute entry.

FIGURE 40: ARBITRARY INCREMENT GROOM
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Once the data of an attribute entry has been altered with the 
increment, then the exact address of the attribute entry can be 
determined by reading back all the attributes and finding the 
modification. With the address of the attribute entry, the Flink pointer 
can be modified by incrementing the second least significant byte. 
This will gain full control of the next attribute entry header. 

While the pipe attribute entry structures can provide an arbitrary  
read primitive, there is no way to leverage them for arbitrary writes. 
The solution is to locate the CCB and the write data queue entry and 
then use the arbitrary increment to adjust the Flink of a data queue 
entry and take control of the queue. Then an arbitrary write can be 
gained in the same manner as the NonPagedPool overflow. 

FIGURE 41: PIPE ATTRIBUTE HEADER INCREMENT TO ARBITRARY READ
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Exploiting ALPC  
Completion List Corruption

Unlike the previously discussed vulnerabilities, CVE-2021-34514 does 
not result in corruption in the Paged or NonPaged pool. Instead, the 
corruption occurs from a buffer allocated in the system address range 
via MiReservePtes. Exploitation of this type of memory corruption 
has not been published – to the knowledge of the author – and as the 
vulnerability is reachable from all browser sandboxes, details of 
exploitation will be left as an exercise for the reader.

https://get.fieldeffect.com/blackswan


fieldeffect.com/blackswan

Blackswan Technical Write-Up 42

Conclusion
A common thread with these vulnerabilities is that they have been 
present in the Windows kernel since Windows Vista – almost 15 years. 
Given that they were all found in just over a week-long time period while 
researching a side project, it is likely that they have been discovered by 
others and are potentially being exploited in the wild. 

By the same reasoning, it is also likely that there are  
still many other bugs in the Windows kernel that could  
be exploited. During the course of research, several  
DoS bugs were found, not all of which were disclosed  
as Microsoft expressed they were not interested in  
DoS bugs.

In fact, while writing this paper, another LPE bug (CVE-
2021-26442) was found in a separate area of the kernel. 
More details will follow 30 days after the vulnerability  
has been patched.
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